pid-balancer/control_functions.py

175 lines
6.9 KiB
Python

from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor
import board # General board pin mapper
from adafruit_servokit import ServoKit # Servo libraries for PWM driver board
import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer
from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library
from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library
import adafruit_pcf8591 as pcf8591 # AD/DA converter board for potentiometer
import numpy as np # Number handling
import pandas as pd # Data handling
import matplotlib.pyplot as plt # Plotter handling
from scipy.integrate import odeint # Integral calculations
import statistics as st # Mean and median calculations
import csv # CSV handling
from datetime import datetime # Date and time formatting
import time # Time formatting
# Variables to control sensor
TRIGGER_PIN = board.D4 # GPIO pin xx
ECHO_PIN = board.D17 # GPIO pin xx
TIMEOUT: float = 0.1 # Timout for echo wait
MIN_DISTANCE: int = 4 # Minimum sensor distance to considered valid
MAX_DISTANCE: int = 40 # Maximum sensor distance to considered valid
# Variables to control servo
KIT = ServoKit(channels=16) # Define the type of board (8, 16)
MIN_PULSE = 500 # Defines angle 0
MAX_PULSE = 2500 # Defines angle 180
KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
# Variables to control logging.
LOG: bool = True # Log data to files
SCREEN: bool = True # Log data to screen
DEBUG: bool = False # More data to display
# Control the number of samples for single measurement
MAX_SAMPLES = 10
# Control the number of samples for the potentiometer
PCF_VALUE = 65535
POT_MAX = 65280
POT_MIN = 256
POT_INTERVAL = 0.1
# Variables to assist PID calculations
current_time: float = 0
integral: float = 0
time_prev: float = -1e-6
error_prev: float = 0
# Variables to control PID values (PID formula tweaks)
p_value : float = 2.0
i_value: float = 0.0
d_value: float = 0.0
# Initial variables, used in pid_calculations()
i_result: float = 0.0
previous_time: float = 0.0
previous_error: float = 0.0
# Init array, used in read_distance_sensor()
sample_array: list = []
def initial():
...
# Write data to any of the logfiles
def log_data(file_stamp: str, data_file: str, data_line: float, remark: str|None):
log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file:
data_writer = csv.writer(data_file)
data_writer.writerow([log_stamp,data_line, remark])
def read_distance_sensor(file_stamp):
# Do a burst (MAX_SAMPLES) of measurements, filter out the obvious wrong ones (too short or to long distance)
# Return the mean timestamp and median distance.
with hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=TIMEOUT) as sonar:
samples: int = 0
max_samples: int = MAX_SAMPLES
timestamp_last: float = 0.0
timestamp_first: float = 0.0
while samples != max_samples:
try:
distance: float = sonar.distance
if MIN_DISTANCE < distance < MAX_DISTANCE:
log_data(file_stamp,"sensor", distance, None) if LOG else None
print("Distance: ", distance) if SCREEN else None
sample_array.append(distance)
if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(),
'%Y%m%d%H%M%S.%f')[:-3])
if samples == max_samples - 1: timestamp_last = float(datetime.strftime(datetime.now(),
'%Y%m%d%H%M%S.%f')[:-3])
timestamp_first_float: float = float(timestamp_first)
timestamp_last_float: float = float(timestamp_last)
samples: int = samples + 1
median_distance: list = st.median(sample_array)
mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float])
print(median_distance) if SCREEN else None
print(mean_timestamp) if SCREEN else None
else:
log_data(file_stamp,"sensor", distance,"Ignored") if LOG and DEBUG else None
print("Distance: ", distance) if SCREEN else None
except RuntimeError:
log_data(file_stamp, "sensor", 999.999, "Timeout") if LOG and DEBUG else None
print("Timeout") if SCREEN else None
return median_distance, mean_timestamp
def read_setpoint():
i2c = board.I2C()
pcf = PCF.PCF8591(i2c)
pcf_in_0 = AnalogIn(pcf, PCF.A0)
pcf_out = AnalogOut(pcf, PCF.OUT)
pcf_out.value = PCF_VALUE
while True:
raw_value: float = pcf_in_0.value
scaled_value: float = (raw_value / PCF_VALUE) * pcf_in_0.reference_voltage
# Calculate angle in reference to raw pot values
angle: float = ((180 - 0) / (POT_MAX - POT_MIN)) * (raw_value - POT_MIN)
if SCREEN:
print('pin 0 ', pcf.read(0))
print('raw_value ',raw_value)
print("pin 0: %0.2fV" % scaled_value)
print(angle)
time.sleep(POT_INTERVAL)
send_data_to_servo(set_angle=angle)
def calculate_velocity():
...
def pid_calculations(setpoint):
global i_result, previous_time, previous_error
offset_value: int = 320
measurement, measurement_time = read_distance_sensor()
error: float = setpoint - measurement
error_sum: float = 0.0
if previous_time is None:
previous_error = 0.0
previous_time = current_time
i_result = 0.0
error_sum = error * 0.008 # sensor sampling number approximation.
error_sum: float = error_sum + (error * (current_time - previous_time))
p_result = p_value * error
i_result = i_value * error_sum
d_result = d_value * ((error - previous_error) / (measurement_time - previous_time))
pid_result = offset_value + p_result + i_result + d_result
previous_error = error
previous_time = measurement_time
return pid_result
def calculate_new_servo_position():
...
def send_data_to_servo(set_angle):
KIT.servo[0].angle = set_angle # Set angle
read_distance_sensor(file_stamp=123)
read_setpoint()