from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor import board # General board pin mapper from adafruit_servokit import ServoKit # Servo libraries for PWM driver board import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library import statistics as st # Mean and median calculations import csv # CSV handling from datetime import datetime # Date and time formatting import time # Time formatting import main # Variables to control sensor TRIGGER_PIN = board.D4 # GPIO pin xx ECHO_PIN = board.D17 # GPIO pin xx TIMEOUT: float = 0.1 # Timout for echo wait MIN_DISTANCE: int = 4 # Minimum sensor distance to considered valid MAX_DISTANCE: int = 40 # Maximum sensor distance to considered valid # Variables to control servo KIT = ServoKit(channels=16) # Define the type of board (8, 16) MIN_PULSE = 500 # Defines angle 0 MAX_PULSE = 2500 # Defines angle 180 KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE) # Variables to control logging. LOG: bool = True # Log data to files SCREEN: bool = True # Log data to screen DEBUG: bool = False # More data to display # Control the number of samples for single measurement MAX_SAMPLES = 10 # Control the number of samples for the potentiometer PCF_VALUE = 65535 POT_MAX = 65280 POT_MIN = 256 POT_INTERVAL = 0.01 # Variables to assist PID calculations current_time: float = 0 integral: float = 0 time_prev: float = -1e-6 error_prev: float = 0 # Variables to control PID values (PID formula tweaks) p_value : float = 2.0 i_value: float = 0.0 d_value: float = 0.0 # Initial variables, used in pid_calculations() i_result: float = 0.0 previous_time: float = 0.0 previous_error: float = 0.0 # Init array, used in read_distance_sensor() sample_array: list = [] def initial(): ... # Write data to any of the logfiles def log_data(file_stamp: str, data_file: str, data_line: str, remark: str|None): log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3] with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file: data_writer = csv.writer(data_file) data_writer.writerow([log_stamp,data_line, remark]) def read_distance_sensor(file_stamp): # Do a burst (MAX_SAMPLES) of measurements, filter out the obvious wrong ones (too short or to long distance) # Return the mean timestamp and median distance. with hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=TIMEOUT) as sonar: samples: int = 0 max_samples: int = MAX_SAMPLES timestamp_last: float = 0.0 timestamp_first: float = 0.0 while samples != max_samples: try: distance: float = sonar.distance if MIN_DISTANCE < distance < MAX_DISTANCE: log_data(file_stamp,"sensor", str(distance), None) if LOG else None print("Distance: ", distance) if SCREEN else None sample_array.append(distance) if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]) if samples == max_samples - 1: timestamp_last = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]) timestamp_first_float: float = float(timestamp_first) timestamp_last_float: float = float(timestamp_last) samples: int = samples + 1 median_distance: list = st.median(sample_array) mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float]) print(median_distance) if SCREEN else None print(mean_timestamp) if SCREEN else None else: log_data(file_stamp=file_stamp, data_file="sensor", data_line=str(distance), remark=None) if LOG else None print("Distance: ", distance) if SCREEN else None except RuntimeError: log_data(file_stamp=file_stamp, data_file="sensor", data_line="999.999", remark="Timeout") if LOG and DEBUG else None print("Timeout") if SCREEN else None return median_distance, mean_timestamp def read_setpoint(file_stamp): i2c = board.I2C() pcf = PCF.PCF8591(i2c) pcf_in_0 = AnalogIn(pcf, PCF.A0) pcf_out = AnalogOut(pcf, PCF.OUT) pcf_out.value = PCF_VALUE while True: raw_value: int = pcf_in_0.value scaled_value: float = (raw_value / PCF_VALUE) * pcf_in_0.reference_voltage # Calculate angle in reference to raw pot values angle = round(((180 - 0) / (POT_MAX - POT_MIN)) * (raw_value - POT_MIN),0) log_line = str(scaled_value) + "," + str(raw_value) + "," + str(angle) log_data(file_stamp=file_stamp, data_file="potmeter", data_line=log_line, remark=None) if LOG else None if SCREEN: print('pin 0= ', pcf.read(0)) print('raw_value= ',raw_value) print("pin 0= %0.2fV" % scaled_value) print('Scaled= ' , scaled_value) print(angle) time.sleep(POT_INTERVAL) send_servo_angle(set_angle=angle) def calculate_velocity(file_stamp): velocity = "0" log_data(file_stamp=file_stamp, data_file="velocity", data_line=velocity, remark=None) if LOG else None def pid_calculations(file_stamp, setpoint): global i_result, previous_time, previous_error offset_value: int = 320 measurement, measurement_time = read_distance_sensor(file_stamp=main.file_stamp) # todo Check logging error: float = setpoint - measurement error_sum: float = 0.0 if previous_time is None: previous_error = 0.0 previous_time = current_time i_result = 0.0 error_sum = error * 0.008 # sensor sampling number approximation. error_sum: float = error_sum + (error * (current_time - previous_time)) p_result = p_value * error i_result = i_value * error_sum d_result = d_value * ((error - previous_error) / (measurement_time - previous_time)) pid_result = offset_value + p_result + i_result + d_result previous_error = error previous_time = measurement_time log_line = str(p_result) + "," + str(i_result) + "," + str(d_result) + "," + str(pid_result) log_data(file_stamp=file_stamp, data_file="pid", data_line=log_line, remark=None) if LOG else None return pid_result def calculate_servo_position(): ... def send_servo_angle(set_angle): KIT.servo[0].angle = set_angle # Set angle