Compare commits
2 Commits
c8a10d9deb
...
d27de43dc8
| Author | SHA1 | Date | |
|---|---|---|---|
| d27de43dc8 | |||
| fcee7718f1 |
@ -21,7 +21,7 @@ kit.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
|
|||||||
# The servo angle in degrees. Must be in the range 0 to actuation_range.
|
# The servo angle in degrees. Must be in the range 0 to actuation_range.
|
||||||
# Is None when servo is disabled.
|
# Is None when servo is disabled.
|
||||||
|
|
||||||
kit.servo[0].angle = 90
|
kit.servo[0].angle = 88
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -1,45 +1,41 @@
|
|||||||
from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor
|
|
||||||
import board # General board pin mapper
|
|
||||||
from adafruit_servokit import ServoKit # Servo libraries for PWM driver board
|
from adafruit_servokit import ServoKit # Servo libraries for PWM driver board
|
||||||
import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer
|
import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer
|
||||||
from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library
|
from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library
|
||||||
from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library
|
from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library
|
||||||
|
from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor
|
||||||
|
import board # General board pin mapper
|
||||||
import statistics as st # Mean and median calculations
|
import statistics as st # Mean and median calculations
|
||||||
import csv # CSV handling
|
import csv # CSV handling
|
||||||
from time import sleep # Sleep/pause
|
from time import sleep # Sleep/pause
|
||||||
import pandas as pd
|
import pandas as pd # Pandas for data manipulation
|
||||||
from datetime import datetime
|
from datetime import datetime # Datetime for timestamps
|
||||||
import busio
|
import math # Math for particular calculations
|
||||||
import adafruit_vl6180x
|
import matplotlib.pyplot as plt # Mathplotlib for graphs
|
||||||
import math
|
|
||||||
|
|
||||||
# laser sensor controls.
|
|
||||||
# i2c = busio.I2C(board.SCL, board.SDA)
|
|
||||||
# laser = adafruit_vl6180x.VL6180X(i2c)
|
|
||||||
|
|
||||||
# Variables to control sensor
|
# Variables to control sensor
|
||||||
TRIGGER_PIN = board.D4 # GPIO pin xx
|
TRIGGER_PIN = board.D4 # GPIO pin xx
|
||||||
ECHO_PIN = board.D17 # GPIO pin xx
|
ECHO_PIN = board.D17 # GPIO pin xx
|
||||||
PIN_TIMEOUT: float = 0.1 # Timeout for echo wait -- don't change
|
PIN_TIMEOUT: float = 0.1 # Timeout for echo wait -- don't change
|
||||||
RUN_TIMEOUT: float = 0.0 # Sleep time in function
|
RUN_TIMEOUT: float = 0.0 # Sleep time in read_distance() function
|
||||||
MIN_DISTANCE: int = 6 # Minimum sensor distance to be considered valid (1 on bar)
|
MIN_DISTANCE: int = 2 # Minimum sensor distance to be considered valid (1 on bar)
|
||||||
MAX_DISTANCE: int = 40 # Maximum sensor distance to be considered valid (35 on bar)
|
MAX_DISTANCE: int = 36 # Maximum sensor distance to be considered valid (35 on bar)
|
||||||
|
|
||||||
# Variables to control servo
|
# Variables to control servo
|
||||||
KIT = ServoKit(channels=16) # Define the type of board (8, 16)
|
KIT = ServoKit(channels=16) # Define the type of board (8, 16)
|
||||||
MIN_PULSE: int = 400 # Defines angle 80, for current PID setup
|
MIN_PULSE: int = 400 # Defines angle 80, for current PID setup
|
||||||
MAX_PULSE: int = 2500 # Defines angle 100, for current PID setup
|
MAX_PULSE: int = 2500 # Defines angle 100, for current PID setup
|
||||||
OFFSET: int = -1
|
OFFSET: int = -2 # Correction nominal angle versus physical angle of the arm
|
||||||
KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
|
KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
|
||||||
|
|
||||||
# Variables to control logging.
|
# Variables to control logging.
|
||||||
LOG: bool = True # Log data to files
|
LOG: bool = False # Log data to files
|
||||||
|
LOG_GRAPH: bool = True # Log graph creation
|
||||||
SCREEN: bool = True # Log data to screen
|
SCREEN: bool = True # Log data to screen
|
||||||
DEBUG: bool = False # More data to display
|
DEBUG: bool = False # More data to display
|
||||||
TWIN_MODE: bool = True # Run in live or twin mode
|
TWIN_MODE: bool = True # Run in live or twin mode
|
||||||
|
|
||||||
# Control the number of samples for single distance measurement (average from burst)
|
# Control the number of samples for single distance measurement (average from sample burst)
|
||||||
MAX_SAMPLES: int = 1
|
MAX_SAMPLES: int = 8
|
||||||
|
|
||||||
# Control the potentiometer
|
# Control the potentiometer
|
||||||
# Description:
|
# Description:
|
||||||
@ -64,48 +60,78 @@ pcf_out = AnalogOut(pcf, PCF.OUT)
|
|||||||
pcf_out.value = PCF_VAL
|
pcf_out.value = PCF_VAL
|
||||||
|
|
||||||
# Variables to control PID values (PID formula tweaks)
|
# Variables to control PID values (PID formula tweaks)
|
||||||
p_value: float = 0.5
|
p_value: float = 1.0
|
||||||
i_value: float = 0.01
|
i_value: float = 0.0
|
||||||
d_value: float = 0.0
|
d_value: float = 0.1
|
||||||
|
|
||||||
# Initial variables, used in pid_calculations()
|
# Initial variables, used in pid_calculations()
|
||||||
i_result: float = 0.0
|
i_result: float = 0.0
|
||||||
previous_time: float = 0.0
|
previous_time: float = 0.0
|
||||||
previous_error: float = 0.0
|
previous_error: float = 0.0
|
||||||
|
|
||||||
# Error sum array
|
# Error sum array values
|
||||||
error_sum_max: int = 10
|
error_sum_max: int = 10
|
||||||
error_sum_array: list = [0] * error_sum_max
|
error_sum_array: list = [0] * error_sum_max
|
||||||
error_sum_counter: int = 0
|
error_sum_counter: int = 0
|
||||||
|
|
||||||
|
# Digital twin parameters
|
||||||
# Digital twin
|
|
||||||
previous_speed: float = 0.0
|
previous_speed: float = 0.0
|
||||||
previous_position: float = 0.0
|
previous_position: float = 0.0
|
||||||
previous_angle: int = 90
|
previous_angle: int = 90
|
||||||
|
# a: acceleration
|
||||||
|
# g: gravity (9.81 m/s^2)
|
||||||
|
# theta: angle of the inclined plane
|
||||||
|
# u: coefficient of the friction between the cart and the inclined plane.
|
||||||
|
acceleration: float = 0.0
|
||||||
|
gravity: float = 9.81
|
||||||
|
friction: float = 0.05
|
||||||
|
delta_t: float = 0.2
|
||||||
|
|
||||||
#maximum angle the servo can move away from steady position. With 10 the range is between 80 and 100, with steady at 90
|
# Maximum angle the servo can move away from steady position. With 10 the range is between 80 (-10) and 100 (+10),
|
||||||
max_angle = 10
|
# with steady at 90 (0)
|
||||||
|
max_angle: int = 5
|
||||||
|
|
||||||
# servo slower
|
# Servo slower
|
||||||
current_angle: int = 90
|
current_angle: int = 90
|
||||||
|
|
||||||
watch_variable: int = 0
|
# Servo memory for boosting the cart if its stuck due to friction
|
||||||
|
servo_memory_1: int = 0
|
||||||
|
servo_memory_2: int = 0
|
||||||
|
memory_max: int = 5
|
||||||
|
|
||||||
# base time of the system
|
# Current time of the system, used as base for file creation)
|
||||||
base_time: float = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
base_time: float = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
|
|
||||||
|
# Write base_time in file, to be used by other functions.
|
||||||
|
with open("pid-balancer_" + "time_file.txt", "w") as time_file:
|
||||||
|
time_file.write(datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S.%f')[:-3])
|
||||||
|
|
||||||
|
|
||||||
# Write data to any of the logfiles
|
# Write data to any of the logfiles
|
||||||
def log_data(data_file: str, data_line: str, remark: str | None):
|
def log_data(data_file: str, data_line: str, remark: str | None):
|
||||||
log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
|
log_stamp: str = datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S.%f')[:-3]
|
||||||
|
|
||||||
with open("pid-balancer_" + "time_file.txt", "r") as time_file:
|
with open("pid-balancer_" + "time_file.txt", "r") as time_file:
|
||||||
file_stamp: str = time_file.readline()
|
file_stamp: str = time_file.readline()
|
||||||
|
|
||||||
with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file:
|
with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file:
|
||||||
data_writer = csv.writer(data_file)
|
data_writer = csv.writer(data_file, delimiter=';', quoting=csv.QUOTE_MINIMAL)
|
||||||
data_writer.writerow([log_stamp, data_line, remark])
|
data_writer.writerow([log_stamp, data_line, remark])
|
||||||
|
|
||||||
|
|
||||||
|
# Write data to any of the logfiles. This is specifically for one type of logfile that uses multiple data columns
|
||||||
|
def log_data2(data_file: str, data_line: str, data_line2: str | None):
|
||||||
|
log_stamp: str = datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S.%f')[:-3]
|
||||||
|
|
||||||
|
with open("pid-balancer_" + "time_file.txt", "r") as time_file:
|
||||||
|
file_stamp: str = time_file.readline()
|
||||||
|
|
||||||
|
with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file:
|
||||||
|
data_writer = csv.writer(data_file, delimiter=';', quoting=csv.QUOTE_MINIMAL)
|
||||||
|
data_writer.writerow([log_stamp, data_line, data_line2])
|
||||||
|
|
||||||
|
|
||||||
|
# Function to read the SR05 ultrasound sensor data
|
||||||
def read_distance_sensor():
|
def read_distance_sensor():
|
||||||
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
|
|
||||||
@ -121,18 +147,20 @@ def read_distance_sensor():
|
|||||||
timestamp_first: float = 0.0
|
timestamp_first: float = 0.0
|
||||||
|
|
||||||
while samples != max_samples:
|
while samples != max_samples:
|
||||||
sleep(RUN_TIMEOUT)
|
sleep(RUN_TIMEOUT) # Fixes some sensor driver crashes
|
||||||
try:
|
try:
|
||||||
distance: float = sonar.distance # reading distance from the sonic sensor
|
distance: float = sonar.distance # Reading distance from the sonic sensor
|
||||||
# distance: float = laser.range * 10 # reading distance from the laser sensor
|
|
||||||
|
|
||||||
if MIN_DISTANCE < distance < MAX_DISTANCE:
|
if MIN_DISTANCE < distance < MAX_DISTANCE: # Only process distances within expected range.
|
||||||
|
# This drops erroneous readings.
|
||||||
|
|
||||||
log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None
|
log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None
|
||||||
# print("Distance_in_range: ", distance) if SCREEN else None
|
print("Distance_in_range: ", distance) if SCREEN else None # For testing
|
||||||
if max_samples == 1:
|
if max_samples == 1:
|
||||||
median_distance = distance
|
median_distance: float = distance
|
||||||
mean_timestamp = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3])
|
mean_timestamp = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3])
|
||||||
|
samples: int = samples + 1
|
||||||
|
print("Distance_in_range_rounded: ", round(distance, 4)) if SCREEN else None # For testing
|
||||||
else:
|
else:
|
||||||
sample_array.append(distance)
|
sample_array.append(distance)
|
||||||
if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(),
|
if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(),
|
||||||
@ -145,39 +173,46 @@ def read_distance_sensor():
|
|||||||
timestamp_last_float: float = float(timestamp_last)
|
timestamp_last_float: float = float(timestamp_last)
|
||||||
median_distance: float = st.median(sample_array)
|
median_distance: float = st.median(sample_array)
|
||||||
mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float])
|
mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float])
|
||||||
print("Distance_median: ", median_distance) if SCREEN else None
|
if DEBUG:
|
||||||
print("Timestamp_mean: ", mean_timestamp) if DEBUG else None
|
print("Distance_median: ", median_distance)
|
||||||
print("Distance_in_range: ", distance) if SCREEN else None
|
print("Timestamp_mean: ", mean_timestamp)
|
||||||
|
print("Distance_in_range: ", distance)
|
||||||
data_line = str(sample_array) + ',' + str(median_distance)
|
data_line = str(sample_array) + ',' + str(median_distance)
|
||||||
log_data(data_file="sensor_array", data_line= data_line,
|
log_data(data_file="sensor_array", data_line=data_line, remark="")
|
||||||
remark="") if LOG else None
|
|
||||||
print("Distance_in_range_rounded: ", round(distance, 4)) if SCREEN else None
|
print("Distance_in_range_rounded: ", round(distance, 4)) if SCREEN else None
|
||||||
|
|
||||||
samples: int = samples + 1
|
samples: int = samples + 1
|
||||||
|
|
||||||
else:
|
else:
|
||||||
log_data(data_file="sensor", data_line=str(distance), remark="Distance_out_of_range") if LOG else None
|
log_data(data_file="sensor", data_line=str(distance),
|
||||||
|
remark="Distance_out_of_range") if LOG else None
|
||||||
print("Distance_out_of_range: ", round(distance, 4)) if SCREEN else None
|
print("Distance_out_of_range: ", round(distance, 4)) if SCREEN else None
|
||||||
|
|
||||||
except RuntimeError:
|
except RuntimeError:
|
||||||
log_data(data_file="sensor", data_line="999.999", remark="Timeout") if LOG and DEBUG else None
|
log_data(data_file="sensor", data_line="999.999", remark="Timeout") if LOG and DEBUG else None
|
||||||
print("Distance_timed_out") if SCREEN else None
|
print("Distance_timed_out") if SCREEN else None
|
||||||
|
|
||||||
|
# Function process time recorder
|
||||||
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
data_line = str(start_time - end_time)
|
data_line = str(start_time - end_time)
|
||||||
log_data(data_file="function", data_line=data_line, remark="read_distance_sensor") if LOG else None
|
log_data(data_file="function", data_line=data_line, remark="read_distance_sensor") if LOG else None
|
||||||
|
|
||||||
|
# Median distance and Mean time to log writer
|
||||||
|
data_line = str(median_distance)
|
||||||
|
data_line2 = str(mean_timestamp)
|
||||||
|
log_data2(data_file="median_sensor", data_line=data_line, data_line2=data_line2) if LOG_GRAPH else None
|
||||||
|
|
||||||
return median_distance, mean_timestamp
|
return median_distance, mean_timestamp
|
||||||
|
|
||||||
def read_setpoint():
|
|
||||||
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
|
||||||
|
|
||||||
|
def read_setpoint():
|
||||||
|
# Read the resistance of the potentiometer and convert to centimeters for use with setpoint distance
|
||||||
|
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
while True:
|
while True:
|
||||||
raw_value: int = pcf_in_0.value
|
raw_value: int = pcf_in_0.value
|
||||||
scaled_value: float = (raw_value / PCF_VAL) * pcf_in_0.reference_voltage
|
scaled_value: float = (raw_value / PCF_VAL) * pcf_in_0.reference_voltage
|
||||||
|
|
||||||
log_line = str(scaled_value) + "," + str(raw_value) + "," + str("angle")
|
log_line = str(scaled_value) + ";" + str(raw_value) + ";" + str("angle")
|
||||||
log_data(data_file="potmeter", data_line=log_line, remark="") if LOG else None
|
log_data(data_file="potmeter", data_line=log_line, remark="") if LOG else None
|
||||||
|
|
||||||
cm_rounded: int = int(round(scaled_value * POT_PCM, 0))
|
cm_rounded: int = int(round(scaled_value * POT_PCM, 0))
|
||||||
@ -186,9 +221,9 @@ def read_setpoint():
|
|||||||
print('Scaled_rounded = ', round(scaled_value, 4), ' CM_rounded= ', cm_rounded)
|
print('Scaled_rounded = ', round(scaled_value, 4), ' CM_rounded= ', cm_rounded)
|
||||||
print('Scaled_raw= ', scaled_value, ' CM_raw= ', int(scaled_value * POT_PCM))
|
print('Scaled_raw= ', scaled_value, ' CM_raw= ', int(scaled_value * POT_PCM))
|
||||||
|
|
||||||
print('setpoing in cm: ', cm_rounded) if SCREEN else None
|
print('Setpoint in cm: ', cm_rounded) if SCREEN else None
|
||||||
|
|
||||||
sleep(POT_INT)
|
sleep(POT_INT) # Fix for driver crashes
|
||||||
|
|
||||||
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
data_line = str(start_time - end_time)
|
data_line = str(start_time - end_time)
|
||||||
@ -196,31 +231,20 @@ def read_setpoint():
|
|||||||
|
|
||||||
return cm_rounded
|
return cm_rounded
|
||||||
|
|
||||||
|
|
||||||
def digital_twin():
|
def digital_twin():
|
||||||
# a: acceleration
|
# Digital model of the physical model.
|
||||||
# g: gravity (9.81 m/s^2)
|
|
||||||
# theta: angle of the inclined plane
|
global previous_position, previous_speed, base_time
|
||||||
# u: coefficient of the friction between the cart and the inclined plane.
|
|
||||||
acceleration: float = 0.0
|
|
||||||
global previous_position, previous_speed, base_time, watch_variable
|
|
||||||
gravity: float = 9.81
|
|
||||||
friction: float = 0.1
|
|
||||||
delta_t: float = 0.1
|
|
||||||
|
|
||||||
angle = (previous_angle - 90)
|
angle = (previous_angle - 90)
|
||||||
acceleration = gravity * math.sin(math.radians(angle))
|
acceleration = gravity * math.sin(math.radians(angle))
|
||||||
friction_force = friction * gravity * math.cos(math.radians(angle)) * delta_t
|
friction_force = abs(friction * gravity * math.cos(math.radians(angle)) * delta_t)
|
||||||
|
|
||||||
friction_force = abs(friction_force)
|
|
||||||
|
|
||||||
work_speed = previous_speed + acceleration * delta_t
|
work_speed = previous_speed + acceleration * delta_t
|
||||||
watch_variable = watch_variable + 1
|
|
||||||
|
|
||||||
if watch_variable >= 150:
|
# To avoid the friction setting the work_speed to a negative value, forced the friction to be lower than the speed.
|
||||||
print("breakpoint")
|
if friction_force < work_speed * 0.8:
|
||||||
|
|
||||||
print("watch_variable", watch_variable)
|
|
||||||
if friction_force < work_speed:
|
|
||||||
if work_speed > 0:
|
if work_speed > 0:
|
||||||
work_speed = work_speed - friction_force
|
work_speed = work_speed - friction_force
|
||||||
elif work_speed < 0:
|
elif work_speed < 0:
|
||||||
@ -228,35 +252,48 @@ def digital_twin():
|
|||||||
else:
|
else:
|
||||||
work_speed = work_speed
|
work_speed = work_speed
|
||||||
|
|
||||||
current_speed = work_speed
|
current_speed: float = work_speed
|
||||||
|
current_position: float = previous_position + (current_speed * delta_t)
|
||||||
current_position = previous_position + (current_speed * delta_t)
|
if SCREEN:
|
||||||
|
print("Angle", angle)
|
||||||
|
print("Friction", friction)
|
||||||
print("angle", angle)
|
print("Acceleration", acceleration)
|
||||||
print("friction", friction)
|
print("Current speed", current_speed)
|
||||||
print("acceleration", acceleration)
|
print("Current position", current_position)
|
||||||
print("current speed", current_speed)
|
|
||||||
print("current position", current_position)
|
|
||||||
print("")
|
print("")
|
||||||
print("----------------")
|
print("----------------------------------------------")
|
||||||
print("")
|
print("")
|
||||||
|
|
||||||
base_time = base_time + delta_t
|
base_time = base_time + delta_t
|
||||||
|
|
||||||
|
|
||||||
previous_speed = current_speed
|
previous_speed = current_speed
|
||||||
previous_position = current_position
|
previous_position = current_position
|
||||||
|
|
||||||
|
if LOG_GRAPH:
|
||||||
|
# PID position logging
|
||||||
|
data_line = str(current_position)
|
||||||
|
log_data(data_file="twin_current_position", data_line=data_line, remark="")
|
||||||
|
|
||||||
|
# PID acceleration logging
|
||||||
|
data_line = str(acceleration)
|
||||||
|
log_data(data_file="twin_acceleration", data_line=data_line, remark="")
|
||||||
|
|
||||||
|
# PID speed logging
|
||||||
|
data_line = str(current_speed)
|
||||||
|
log_data(data_file="twin_current_speed", data_line=data_line, remark="")
|
||||||
|
|
||||||
return current_position, base_time
|
return current_position, base_time
|
||||||
|
|
||||||
|
|
||||||
def pid_calculations():
|
def pid_calculations():
|
||||||
|
# Do all the PID calculations and return the new angle for the servo
|
||||||
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
|
|
||||||
global i_result, previous_time, previous_error # Can not be annotated with :float, because variables are global.
|
global i_result, previous_time, previous_error # Can not be annotated with :float, because variables are global.
|
||||||
global error_sum_counter, error_sum_array # counter for error_sum_array and error_sum_array itself
|
global error_sum_counter, error_sum_array # counter for error_sum_array and error_sum_array itself
|
||||||
global previous_angle
|
global previous_angle
|
||||||
|
|
||||||
offset_value: int = 0
|
offset_value: int = 0
|
||||||
|
|
||||||
if TWIN_MODE:
|
if TWIN_MODE:
|
||||||
measurement, measurement_time = digital_twin()
|
measurement, measurement_time = digital_twin()
|
||||||
else:
|
else:
|
||||||
@ -278,18 +315,17 @@ def pid_calculations():
|
|||||||
previous_error = error
|
previous_error = error
|
||||||
previous_time = measurement_time
|
previous_time = measurement_time
|
||||||
|
|
||||||
|
# Code to set the max angles. Or set the angle to a specific number = pid_result * max movement + correction
|
||||||
#function to set the 2 max angles. Or set the angle to a specific number = pid_result * max movement + correction
|
if pid_result >= max_angle:
|
||||||
if pid_result >= max_angle: # if PID result is greater than 1, set to 1. 1 = max upward angle
|
|
||||||
output_angle = (90 + max_angle)
|
output_angle = (90 + max_angle)
|
||||||
elif pid_result <= -max_angle: # if PID result is greater than 1, set to 1. 1 = max downward angle
|
elif pid_result <= -max_angle:
|
||||||
output_angle = (90 - max_angle)
|
output_angle = (90 - max_angle)
|
||||||
elif -max_angle < pid_result < max_angle:
|
elif -max_angle < pid_result < max_angle:
|
||||||
output_angle = pid_result + 90
|
output_angle = pid_result + 90
|
||||||
else:
|
else:
|
||||||
output_angle = 90
|
output_angle = 90
|
||||||
|
|
||||||
log_line = str(p_result) + "," + str(i_result) + "," + str(d_result) + "," + str(pid_result)
|
log_line = str(p_result) + ";" + str(i_result) + ";" + str(d_result) + ";" + str(pid_result)
|
||||||
log_data(data_file="pid", data_line=log_line, remark="") if LOG else None
|
log_data(data_file="pid", data_line=log_line, remark="") if LOG else None
|
||||||
|
|
||||||
if DEBUG:
|
if DEBUG:
|
||||||
@ -298,7 +334,7 @@ def pid_calculations():
|
|||||||
print("I_result: ", i_result)
|
print("I_result: ", i_result)
|
||||||
print("PID_result: ", pid_result)
|
print("PID_result: ", pid_result)
|
||||||
|
|
||||||
if error_sum_counter <= error_sum_max-2:
|
if error_sum_counter <= error_sum_max - 2: # Correction tweak for error sum
|
||||||
error_sum_counter = error_sum_counter + 1
|
error_sum_counter = error_sum_counter + 1
|
||||||
else:
|
else:
|
||||||
error_sum_counter = 0
|
error_sum_counter = 0
|
||||||
@ -312,23 +348,37 @@ def pid_calculations():
|
|||||||
output_angle = round(output_angle)
|
output_angle = round(output_angle)
|
||||||
previous_angle = output_angle
|
previous_angle = output_angle
|
||||||
|
|
||||||
|
# PID angle logging
|
||||||
|
data_line = str(output_angle)
|
||||||
|
log_data(data_file="pid_output_angle", data_line=data_line, remark="") if LOG_GRAPH and TWIN_MODE == False else None
|
||||||
|
log_data(data_file="pid_output_angle_twin", data_line=data_line,
|
||||||
|
remark="") if LOG_GRAPH and TWIN_MODE == True else None
|
||||||
|
|
||||||
return output_angle
|
return output_angle
|
||||||
|
|
||||||
|
|
||||||
def control_server_angle(angle):
|
def control_server_angle(angle):
|
||||||
|
# Tell the servo to set its position
|
||||||
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
|
|
||||||
|
print("Current angle: ", angle) if SCREEN else None
|
||||||
|
|
||||||
servo_angle = angle + OFFSET
|
servo_angle = angle + OFFSET
|
||||||
|
|
||||||
KIT.servo[0].angle = servo_angle # Set angle
|
print("Offset angle: ", servo_angle) if SCREEN else None
|
||||||
|
|
||||||
|
KIT.servo[0].angle = servo_angle # Send angle instruction to the servo
|
||||||
|
|
||||||
log_line = str(angle)
|
log_line = str(angle)
|
||||||
log_data(data_file="servo", data_line=log_line, remark="") if LOG else None
|
log_data(data_file="servo", data_line=log_line, remark="") if LOG else None
|
||||||
print("angle: ", servo_angle) if SCREEN else None
|
|
||||||
|
|
||||||
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
data_line = str(start_time - end_time)
|
data_line = str(start_time - end_time)
|
||||||
log_data(data_file="function", data_line=data_line, remark="control_server_angle") if LOG else None
|
log_data(data_file="function", data_line=data_line, remark="control_server_angle") if LOG else None
|
||||||
|
|
||||||
|
|
||||||
def servo_slower():
|
def servo_slower():
|
||||||
|
# This function restricts the servo to +/- 5 degrees in order to prevent launching the cart
|
||||||
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
|
||||||
|
|
||||||
global current_angle
|
global current_angle
|
||||||
@ -348,10 +398,39 @@ def servo_slower():
|
|||||||
|
|
||||||
return servo_angle
|
return servo_angle
|
||||||
|
|
||||||
|
|
||||||
|
def graph_plotter(file_name):
|
||||||
|
# Creates the graphs with Pandas and Mathplotlib using the logiles as input. It must be run manually.
|
||||||
|
|
||||||
|
plt.rcParams['figure.figsize'] = [12, 8] # Set the size of the plot canvas
|
||||||
|
picture_name = file_name + '.png' # User the name of the logfile as input for the graphical image
|
||||||
|
file_name_plotter = file_name + ".csv" # Use the logfile as input
|
||||||
|
|
||||||
|
# Run one set of the graph code.
|
||||||
|
|
||||||
|
# df = pd.read_csv(file_name_plotter,delimiter=';', header=None, skiprows=0, decimal=".", names=['Timestamp', 'Distance', 'Timestamp2','Remarks'])
|
||||||
|
# df = df.drop(columns = ['Timestamp2'])
|
||||||
|
|
||||||
|
df = pd.read_csv(file_name_plotter, delimiter=';', header=None, skiprows=0, decimal=".",
|
||||||
|
names=['Timestamp', 'Distance', 'Remarks'])
|
||||||
|
|
||||||
|
df = df.drop(columns=['Remarks'])
|
||||||
|
|
||||||
|
plt.figure(figsize=(30, 60))
|
||||||
|
df.plot(x='Timestamp', y='Distance')
|
||||||
|
plt.savefig(picture_name)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# -------------------- Main ----------------------------------
|
||||||
try:
|
try:
|
||||||
KIT.servo[0].angle = 90
|
KIT.servo[0].angle = 90
|
||||||
|
# graph_plotter("pid-balancer_pid_output_angle_twin_data_2025-01-17 14:29:29.624")
|
||||||
|
# graph_plotter("pid-balancer_twin_acceleration_data_2025-01-17 14:29:29.624")
|
||||||
|
# graph_plotter("pid-balancer_twin_current_position_data_2025-01-17 14:29:29.624")
|
||||||
|
# graph_plotter("pid-balancer_twin_current_speed_data_2025-01-17 14:29:29.624")
|
||||||
while True:
|
while True:
|
||||||
# digital_twin()
|
|
||||||
control_server_angle(pid_calculations())
|
control_server_angle(pid_calculations())
|
||||||
|
print("------------------------------------------\n")
|
||||||
except RuntimeError:
|
except RuntimeError:
|
||||||
print("bbbb")
|
print("What's up?!")
|
||||||
|
|||||||
3
picture_generator.py
Normal file
3
picture_generator.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
Loading…
x
Reference in New Issue
Block a user