Merge remote-tracking branch 'origin/master'
# Conflicts: # control_functions.py
This commit is contained in:
commit
6608ecc8bf
@ -1,6 +1,6 @@
|
||||
from adafruit_hcsr04 import HCSR04 as hcsr04 # PWM driver board for servo
|
||||
import board # PWM driver board for servo
|
||||
from adafruit_servokit import ServoKit # Servo libraries
|
||||
from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor
|
||||
import board # General board pin mapper
|
||||
from adafruit_servokit import ServoKit # Servo libraries for PWM driver board
|
||||
import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer
|
||||
from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library
|
||||
from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library
|
||||
@ -14,8 +14,6 @@ import csv # CSV handling
|
||||
from datetime import datetime # Date and time formatting
|
||||
import time # Time formatting
|
||||
|
||||
|
||||
######################################## Variables (start) ##################################
|
||||
# Variables to control sensor
|
||||
TRIGGER_PIN = board.D4 # GPIO pin xx
|
||||
ECHO_PIN = board.D17 # GPIO pin xx
|
||||
@ -34,49 +32,52 @@ LOG: bool = True # Log data to files
|
||||
SCREEN: bool = True # Log data to screen
|
||||
DEBUG: bool = False # More data to display
|
||||
|
||||
# Control the number of samples for single measurement
|
||||
MAX_SAMPLES = 10
|
||||
|
||||
# Control the number of samples for the potentiometer
|
||||
PCF_VALUE = 65535
|
||||
POT_MAX = 65280
|
||||
POT_MIN = 256
|
||||
POT_INTERVAL = 0.1
|
||||
|
||||
# Variables to assist PID calculations
|
||||
current_time = 0
|
||||
integral = 0
|
||||
time_prev = -1e-6
|
||||
error_prev = 0
|
||||
current_time: float = 0
|
||||
integral: float = 0
|
||||
time_prev: float = -1e-6
|
||||
error_prev: float = 0
|
||||
|
||||
# Variables to control PID values (PID formula tweaks)
|
||||
p_value = 2
|
||||
i_value = 0
|
||||
d_value = 0
|
||||
p_value : float = 2.0
|
||||
i_value: float = 0.0
|
||||
d_value: float = 0.0
|
||||
|
||||
# Initial variables, used in pid_calculations()
|
||||
i_result = 0
|
||||
previous_time = 0
|
||||
previous_error = 0
|
||||
i_result: float = 0.0
|
||||
previous_time: float = 0.0
|
||||
previous_error: float = 0.0
|
||||
|
||||
# Init array, used in read_distance_sensor()
|
||||
sample_array: list = []
|
||||
|
||||
######################################## Variables (end) ##################################
|
||||
|
||||
def initial():
|
||||
...
|
||||
|
||||
# Create timestamp strings for logs and screen
|
||||
def time_stamper():
|
||||
log_timestamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
|
||||
file_timestamp: str = datetime.strftime(datetime.now(), '%Y%m%d%I%M')
|
||||
return log_timestamp, file_timestamp
|
||||
|
||||
# Write data to any of the logfiles
|
||||
def log_data(fixed_file_stamp: str, data_file: str, data_line: float, remark: str|None):
|
||||
log_stamp, _ = time_stamper()
|
||||
def log_data(file_stamp: str, data_file: str, data_line: float, remark: str|None):
|
||||
log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
|
||||
|
||||
with open("pid-balancer_" + data_file + "_data_" + fixed_file_stamp + ".csv", "a") as data_file:
|
||||
with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file:
|
||||
data_writer = csv.writer(data_file)
|
||||
data_writer.writerow([log_stamp,data_line, remark])
|
||||
|
||||
def read_distance_sensor(fixed_file_stamp):
|
||||
def read_distance_sensor(file_stamp):
|
||||
|
||||
with (hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=TIMEOUT) as sonar):
|
||||
# Do a burst (MAX_SAMPLES) of measurements, filter out the obvious wrong ones (too short or to long distance)
|
||||
# Return the mean timestamp and median distance.
|
||||
with hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=TIMEOUT) as sonar:
|
||||
samples: int = 0
|
||||
max_samples: int = 10
|
||||
max_samples: int = MAX_SAMPLES
|
||||
timestamp_last: float = 0.0
|
||||
timestamp_first: float = 0.0
|
||||
while samples != max_samples:
|
||||
@ -84,12 +85,14 @@ def read_distance_sensor(fixed_file_stamp):
|
||||
distance: float = sonar.distance
|
||||
if MIN_DISTANCE < distance < MAX_DISTANCE:
|
||||
|
||||
log_data(fixed_file_stamp,"sensor", distance, None) if LOG else None
|
||||
log_data(file_stamp,"sensor", distance, None) if LOG else None
|
||||
print("Distance: ", distance) if SCREEN else None
|
||||
|
||||
sample_array.append(distance)
|
||||
if samples == 0: timestamp_first, _ = time_stamper()
|
||||
if samples == max_samples - 1: timestamp_last, _ = time_stamper()
|
||||
if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(),
|
||||
'%Y%m%d%H%M%S.%f')[:-3])
|
||||
if samples == max_samples - 1: timestamp_last = float(datetime.strftime(datetime.now(),
|
||||
'%Y%m%d%H%M%S.%f')[:-3])
|
||||
|
||||
timestamp_first_float: float = float(timestamp_first)
|
||||
timestamp_last_float: float = float(timestamp_last)
|
||||
@ -100,45 +103,37 @@ def read_distance_sensor(fixed_file_stamp):
|
||||
print(mean_timestamp) if SCREEN else None
|
||||
|
||||
else:
|
||||
log_data(fixed_file_stamp,"sensor", distance,"Ignored") if LOG and DEBUG else None
|
||||
log_data(file_stamp,"sensor", distance,"Ignored") if LOG and DEBUG else None
|
||||
print("Distance: ", distance) if SCREEN else None
|
||||
|
||||
except RuntimeError:
|
||||
log_data(fixed_file_stamp, "sensor", 999.999, "Timeout") if LOG and DEBUG else None
|
||||
log_data(file_stamp, "sensor", 999.999, "Timeout") if LOG and DEBUG else None
|
||||
print("Timeout") if SCREEN else None
|
||||
|
||||
return median_distance, mean_timestamp
|
||||
|
||||
def read_setpoint():
|
||||
|
||||
|
||||
############# AnalogOut & AnalogIn Example ##########################
|
||||
#
|
||||
# This example shows how to use the included AnalogIn and AnalogOut
|
||||
# classes to set the internal DAC to output a voltage and then measure
|
||||
# it with the first ADC channel.
|
||||
#
|
||||
# Wiring:
|
||||
# Connect the DAC output to the first ADC channel, in addition to the
|
||||
# normal power and I2C connections
|
||||
#
|
||||
#####################################################################
|
||||
i2c = board.I2C()
|
||||
pcf = PCF.PCF8591(i2c)
|
||||
|
||||
pcf_in_0 = AnalogIn(pcf, PCF.A0)
|
||||
pcf_out = AnalogOut(pcf, PCF.OUT)
|
||||
pcf_out.value = PCF_VALUE
|
||||
|
||||
while True:
|
||||
print("Setting out to ", 65535)
|
||||
pcf_out.value = 65535
|
||||
raw_value = pcf_in_0.value
|
||||
scaled_value = (raw_value / 65535) * pcf_in_0.reference_voltage
|
||||
raw_value: float = pcf_in_0.value
|
||||
scaled_value: float = (raw_value / PCF_VALUE) * pcf_in_0.reference_voltage
|
||||
# Calculate angle in reference to raw pot values
|
||||
angle: float = ((180 - 0) / (POT_MAX - POT_MIN)) * (raw_value - POT_MIN)
|
||||
|
||||
print("Pin 0: %0.2fV" % (scaled_value))
|
||||
print("")
|
||||
time.sleep(1)
|
||||
if SCREEN:
|
||||
print('pin 0 ', pcf.read(0))
|
||||
print('raw_value ',raw_value)
|
||||
print("pin 0: %0.2fV" % scaled_value)
|
||||
print(angle)
|
||||
|
||||
time.sleep(POT_INTERVAL)
|
||||
send_data_to_servo(set_angle=angle)
|
||||
|
||||
def calculate_velocity():
|
||||
...
|
||||
@ -147,7 +142,7 @@ def pid_calculations(setpoint):
|
||||
|
||||
global i_result, previous_time, previous_error
|
||||
offset_value: int = 320
|
||||
measurement, current_time = read_distance_sensor
|
||||
measurement, measurement_time = read_distance_sensor()
|
||||
error: float = setpoint - measurement
|
||||
error_sum: float = 0.0
|
||||
|
||||
@ -157,22 +152,24 @@ def pid_calculations(setpoint):
|
||||
i_result = 0.0
|
||||
error_sum = error * 0.008 # sensor sampling number approximation.
|
||||
|
||||
error_sum = error_sum + (error * (current_time - previous_time))
|
||||
p_result = p_value * error
|
||||
error_sum: float = error_sum + (error * (current_time - previous_time))
|
||||
p_result = p_value * error
|
||||
i_result = i_value * error_sum
|
||||
d_result = d_value * ((error - previous_error) / (current_time - previous_time))
|
||||
d_result = d_value * ((error - previous_error) / (measurement_time - previous_time))
|
||||
pid_result = offset_value + p_result + i_result + d_result
|
||||
previous_error = error
|
||||
previous_time = current_time
|
||||
previous_error = error
|
||||
previous_time = measurement_time
|
||||
|
||||
return pid_result
|
||||
|
||||
|
||||
def calculate_new_servo_pos():
|
||||
def calculate_new_servo_position():
|
||||
...
|
||||
|
||||
|
||||
def send_data_to_servo():
|
||||
def send_data_to_servo(set_angle):
|
||||
|
||||
KIT.servo[0].angle = 180 # Set angle
|
||||
KIT.servo[0].angle = set_angle # Set angle
|
||||
|
||||
read_distance_sensor(file_stamp=123)
|
||||
read_setpoint()
|
||||
14
main.py
14
main.py
@ -1,17 +1,9 @@
|
||||
from datetime import datetime
|
||||
import control_functions as cf
|
||||
import plotter_functions as pf
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.integrate import odeint
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import statistics as st
|
||||
from adafruit_hcsr04 import HCSR04 as hcsr04
|
||||
|
||||
_, fixed_file_stamp = cf.time_stamper()
|
||||
file_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%I%M')
|
||||
|
||||
|
||||
cf.read_distance_sensor(fixed_file_stamp)
|
||||
cf.read_distance_sensor(file_stamp)
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,7 +1,40 @@
|
||||
def read_data_file():
|
||||
pass
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Variables to control logging.
|
||||
LOG: bool = True # Log data to files
|
||||
SCREEN: bool = True # Log data to screen
|
||||
DEBUG: bool = False # More data to display
|
||||
|
||||
def plot_graphs():
|
||||
pass
|
||||
def read_data_file(data_file):
|
||||
data_frame = pd.read_csv(data_file)
|
||||
first_row_time = data_frame['Timestamp'].iloc[1]
|
||||
last_row_time = data_frame['Timestamp'].iloc[-1]
|
||||
first_row_value = data_frame['Value'].iloc[1]
|
||||
last_row_value = data_frame['Value'].iloc[-1]
|
||||
mean_value = data_frame['Value'].mean()
|
||||
median_value = data_frame['Value'].median()
|
||||
sum_value = data_frame['Value'].sum()
|
||||
|
||||
if SCREEN:
|
||||
print('first_row_value ',first_row_value)
|
||||
print('last_row_value ',last_row_value)
|
||||
print('first_row_time ', first_row_time)
|
||||
print('last_row_time ', last_row_time)
|
||||
print('elapsed_time ', (last_row_time - first_row_time))
|
||||
print('mean_value ', mean_value)
|
||||
print('median_value ', median_value)
|
||||
print('sum_value ', sum_value)
|
||||
|
||||
return data_frame
|
||||
|
||||
def plot_data_frame(data_file):
|
||||
|
||||
data_frame = read_data_file(data_file)
|
||||
plt.plot(data_frame['Timestamp'], data_frame['Value'])
|
||||
# plt.savefig(data_file + '.png')
|
||||
# img = plt.imread(data_file + '.png')
|
||||
# plt.imshow(img)
|
||||
plt.show()
|
||||
|
||||
plot_data_frame(data_file = 'pid-balancer_twin_test_data.csv')
|
||||
Loading…
x
Reference in New Issue
Block a user