pid-balancer/control_functions.py

180 lines
6.9 KiB
Python
Raw Normal View History

2024-12-28 21:06:10 +01:00
from adafruit_hcsr04 import HCSR04 as hcsr04 # PWM driver board for servo
import board # PWM driver board for servo
from adafruit_servokit import ServoKit # Servo libraries
import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer
from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library
from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library
import adafruit_pcf8591 as pcf8591 # AD/DA converter board for potentiometer
import numpy as np # Number handling
import pandas as pd # Data handling
import matplotlib.pyplot as plt # Plotter handling
from scipy.integrate import odeint # Integral calculations
import statistics as st # Mean and median calculations
import csv # CSV handling
from datetime import datetime # Date and time formatting
import time # Time formatting
from serial.tools.list_ports_osx import kCFNumberSInt8Type
######################################## Variables (start) ##################################
2024-12-25 16:52:07 +01:00
# Variables to control sensor
2024-12-28 21:06:10 +01:00
TRIGGER_PIN = board.D4 # GPIO pin xx
ECHO_PIN = board.D17 # GPIO pin xx
TIMEOUT: float = 0.1 # Timout for echo wait
MIN_DISTANCE: int = 4 # Minimum sensor distance to considered valid
MAX_DISTANCE: int = 40 # Maximum sensor distance to considered valid
# Variables to control servo
KIT = ServoKit(channels=16) # Define the type of board (8, 16)
MIN_PULSE = 500 # Defines angle 0
MAX_PULSE = 2500 # Defines angle 180
KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
2024-12-25 16:52:07 +01:00
# Variables to control logging.
2024-12-28 21:06:10 +01:00
LOG: bool = True # Log data to files
SCREEN: bool = True # Log data to screen
DEBUG: bool = False # More data to display
# Variables to assist PID calculations
current_time: float = 0
integral: float = 0
time_prev: float = -1e-6
error_prev: float = 0
# Variables to control PID values (PID formula tweaks)
p_value: float = 2
i_value: float = 0
d_value: float = 0
2024-12-25 16:52:07 +01:00
2024-12-28 21:06:10 +01:00
# Initial variables, used in pid_calculations()
i_result: float = 0
previous_time: float
previous_error: float
2024-12-25 16:52:07 +01:00
2024-12-28 21:06:10 +01:00
# Init array, used in read_distance_sensor()
sample_array: list = []
2024-12-28 21:06:10 +01:00
######################################## Variables (end) ##################################
2024-12-25 16:52:07 +01:00
def initial():
...
2024-12-28 21:06:10 +01:00
# Create timestamp strings for logs and screen
def time_stamper():
log_timestamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
file_timestamp: str = datetime.strftime(datetime.now(), '%Y%m%d%I%M')
return log_timestamp, file_timestamp
# Write data to any of the logfiles
def log_data(fixed_file_stamp: str, data_file: str, data_line: float, remark: str|None):
log_stamp, _ = time_stamper()
with open("pid-balancer_" + data_file + "_data_" + fixed_file_stamp + ".csv", "a") as data_file:
data_writer = csv.writer(data_file)
data_writer.writerow([log_stamp,data_line, remark])
2024-12-25 16:52:07 +01:00
def read_distance_sensor(fixed_file_stamp):
with (hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=TIMEOUT) as sonar):
2024-12-28 21:06:10 +01:00
samples: int = 0
max_samples: int = 10
timestamp_last: float = 0.0
timestamp_first: float = 0.0
while samples != max_samples:
2024-12-25 16:52:07 +01:00
try:
2024-12-28 21:06:10 +01:00
distance: float = sonar.distance
2024-12-25 16:52:07 +01:00
if MIN_DISTANCE < distance < MAX_DISTANCE:
2024-12-28 21:06:10 +01:00
log_data(fixed_file_stamp,"sensor", distance, None) if LOG else None
print("Distance: ", distance) if SCREEN else None
sample_array.append(distance)
2024-12-28 21:06:10 +01:00
if samples == 0: timestamp_first, _ = time_stamper()
if samples == max_samples - 1: timestamp_last, _ = time_stamper()
2024-12-28 21:06:10 +01:00
timestamp_first_float: float = float(timestamp_first)
timestamp_last_float: float = float(timestamp_last)
samples: int = samples + 1
median_distance: list = st.median(sample_array)
mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float])
print(median_distance) if SCREEN else None
print(mean_timestamp) if SCREEN else None
2024-12-25 16:52:07 +01:00
else:
2024-12-28 21:06:10 +01:00
log_data(fixed_file_stamp,"sensor", distance,"Ignored") if LOG and DEBUG else None
2024-12-25 16:52:07 +01:00
print("Distance: ", distance) if SCREEN else None
except RuntimeError:
2024-12-28 21:06:10 +01:00
log_data(fixed_file_stamp, "sensor", 999.999, "Timeout") if LOG and DEBUG else None
2024-12-25 16:52:07 +01:00
print("Timeout") if SCREEN else None
return median_distance, mean_timestamp
2024-12-25 16:52:07 +01:00
def read_setpoint():
2024-12-28 21:06:10 +01:00
############# AnalogOut & AnalogIn Example ##########################
#
# This example shows how to use the included AnalogIn and AnalogOut
# classes to set the internal DAC to output a voltage and then measure
# it with the first ADC channel.
#
# Wiring:
# Connect the DAC output to the first ADC channel, in addition to the
# normal power and I2C connections
#
#####################################################################
i2c = board.I2C()
pcf = PCF.PCF8591(i2c)
pcf_in_0 = AnalogIn(pcf, PCF.A0)
pcf_out = AnalogOut(pcf, PCF.OUT)
while True:
print("Setting out to ", 65535)
pcf_out.value = 65535
raw_value = pcf_in_0.value
scaled_value = (raw_value / 65535) * pcf_in_0.reference_voltage
print("Pin 0: %0.2fV" % (scaled_value))
print("")
time.sleep(1)
2024-12-25 16:52:07 +01:00
def calculate_velocity():
...
2024-12-25 16:52:07 +01:00
2024-12-28 21:06:10 +01:00
def pid_calculations(setpoint):
2024-12-25 16:52:07 +01:00
2024-12-28 21:06:10 +01:00
global i_result, previous_time, previous_error
offset_value: int = 320
measurement, current_time = read_distance_sensor
2024-12-28 21:06:10 +01:00
error: float = setpoint - measurement
error_sum: float = 0.0
if previous_time is None:
previous_error: float = 0.0
previous_time: float = current_time
2024-12-28 21:06:10 +01:00
i_result: float = 0.0
error_sum: float = error * 0.008 # sensor sampling number approximation.
error_sum: float = error_sum + (error * (current_time - previous_time))
2024-12-28 21:06:10 +01:00
p_result: float = p_value * error
i_result: float = i_value * error_sum
d_result: float = d_value * ((error - previous_error) / (current_time - previous_time))
pid_result: float = offset_value + p_result + i_result + d_result
previous_error: float = error
previous_time: float = current_time
2024-12-28 21:06:10 +01:00
return pid_result
2024-12-25 16:52:07 +01:00
def calculate_new_servo_pos():
...
def send_data_to_servo():
2024-12-28 21:06:10 +01:00
KIT.servo[0].angle = 180 # Set angle
2024-12-25 16:52:07 +01:00